Semi-Generalized Closed Mappings and Generalized-Semi Closed Mappings and Its Relationships with Semi-Normal and Semi-Regular Spaces

Zahra Ismaeel Salman
Department of Mathematics, Collage of Basic Education, Thi-Qaar University.

Abstract
In this paper, the semi-generalized closed maps (sg-closed maps) and generalized semi-closed maps (gs-closed maps) are studied and some results are presented and proved including the study of some of their basic properties which are related to such type of mappings. Also, a study of s-normal spaces and s-regular spaces is given using its relationships with sg-closed and gs-closed mappings.

1- Introduction
P. Bahtharyya and P. K. Lahiri [2] introduced the concept of semi-generalized closed sets (sg-closed sets) and investigated some of their properties and semi-T_{1/2} spaces.
S. P. Arya and T. Nour [1] defined the generalized semi-open sets (gs-open sets) and studied some of their properties and characterizations of s-normal spaces by using semi-open sets.
Recently, P. Sundaram introduced the concept of semi-generalized continuous map and generalized semi-continuous.

In this paper, the study of sg and gs-closed maps and some of their basic properties are given, then its relationship with s-normal and s-regular spaces are also presented as the main results.

2- Preliminaries
In this section, the basic definitions and concepts related to this paper are given for completeness:

Definition (2.1), [3]:
A subset of a topological space \((X, \tau)\) is said to be semi-open set, if there exists an open set \(U \subseteq X\) such that \(U \subseteq S \subseteq \text{cl}(U)\), where \(\text{cl}\) refers to the closure.
It is remarkable that the complement of semi-open set is said to be semi-closed set. The semi-closure of subset \(A\) of \((X, \tau)\) denoted by \(\text{scl}(A)\) or briefly \(\text{scl}(A)\), is defined to be the intersection of all semi-closed sets containing \(A\).

Definition (2.2), [2]:
A subset \(A\) of \((X, \tau)\) is said to be semi-generalized closed (written in short as sg-closed) in \((X, \tau)\) if \(\text{scl}(A) \subseteq O\), whenever \(A \subseteq O\) and \(O\) is semi-open in \((X, \tau)\).

Also, a subset \(B\) is said to be semi-generalized open (written as sg-open) in \((X, \tau)\) if its complement \(X-B\) is sg-closed in \((X, \tau)\).
\(A \subseteq X\) is called sg-closed in \(X\) if and only if for all \(U\) semi-open set in \(X\), \(A \subseteq U \implies \text{scl}(A) \subseteq U\).

Following are some of the basic well known results and remarks concerning gs-closed sets:
1. The complement of sg-closed is called sg-open.
2. A set \(A\) is sg-closed if and only if \(\text{scl}(A) - A\) contains no non-empty semi-closed.
3. Let \(A\) be sg-closed, then \(A\) is semi-closed if and only if \(\text{scl}(A) - A\) is semi-closed.
4. If \(A\) is sg-closed and \(A \subseteq B \subseteq \text{scl}(A)\), then \(B\) is sg-closed.
5. Every s-closed set is sg-closed, but the converse is not true.
6. g-closed and sg-closed are in general independent and every semi-closed set is sg-closed.

Now, we consider the other type of topological sets concerning this paper.

Definition (2.3), [1]:
A subset \(A\) of \((X, \tau)\) is said to be generalized semi-open (written as gs-open) in \((X, \tau)\) if \(F \subseteq \text{sint}(A)\), whenever \(F \subseteq A\) and \(F\) is closed in \((X, \tau)\). A subset \(B\) is generalized semi-closed (written as gs-closed) if its complement \(X-B\) is gs-open in \((X, \tau)\).

The following results appeared in [1] and [2] which are given here for completeness:

125
Theorem (2.4): A subset \(A \) of \((X, \tau) \) is gs-closed in \(X \) if and only if \(\text{scl}(A) \subset U \), whenever \(A \subset U \) and \(U \) is open in \((X, \tau) \).

Proposition (2.5): If \(A \) is an open and gs-closed set of \((X, \tau) \), then \(A \) is semi-closed set.

Proposition (2.6): Let \(F \subseteq A \subseteq X \), where \(A \) is an open set in \(X \) and also gs-closed in \(X \). If \(F \) is gs-closed set in \(A \), then \(F \) is gs-closed set in \(X \).

Proposition (2.7): Let \(F \subseteq A \subseteq X \), where \(A \) is an open in \(X \) and if \(F \) is gs-closed set in \(X \), then \(F \) is gs-closed set in \(A \).

3- Semi-Generalized And Generalized Semi-Closed Maps
In this section, we will give the definition of semi-generalized closed maps and generalized semi-closed maps and some related results.

Definition (3.1), [7]: A map \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be semi-closed if for any closed set \(F \) of \(X \), \(f(F) \) is semi-closed in \(Y \).

Definition (3.2), [6]: A map \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be g-closed if for any closed set of \(X \), \(f(F) \) is g-closed in \(Y \).

Definition (3.3), [8]: A map \(f : X \rightarrow Y \) is called a generalized semi-closed map (written as gs-closed map) if for each closed set \(F \subset X \), \(f(F) \) is gs-closed set of \(Y \).

Next, we give some of the obtained results concerning the mappings of this section:

Theorem (3.4): A map \(f : (X, \tau) \rightarrow (Y, \sigma) \) is sg-closed if and only if for each subset \(S \) of \(Y \) and for each open set \(U \) containing \(f^{-1}(S) \), there is a sg-open set \(V \) of \(Y \) such that \(S \subseteq V \) and \(f^{-1}(V) \subseteq U \).

Proof: (Necessity) Let \(S \) be a subset of \(Y \) and \(U \) be an open set of \(X \), such that \(f^{-1}(S) \subset U \).
Then \(Y - f(X - U) \), say \(V \), is a sg-open set containing \(S \), such that \(f^{-1}(V) \subseteq U \).

(Sufficiency) Let \(F \) be a closed set of \(X \), then \(f^{-1}(Y - f(F)) \subset X - F \) and \(X - F \) is open.
By hypothesis, there is a sg-open set \(V \) of \(Y \) such that \(Y - f(F) \subset V \) and \(f^{-1}(V) \subset X - F \).
Therefore, we have \(F \subset X - f^{-1}(V) \) and hence:
\[Y - V \subset f(F) \subset f(X - f^{-1}(V)) \subset Y - V. \]
Which implies \(f(F) = Y - V \), since \(Y - V \) is sg-closed.
\(f(F) \) is sg-closed and thus \(f \) is a sg-closed map.

Theorem (3.5): A mapping \(f : (X, \tau) \rightarrow (Y, \sigma) \) is gs-closed if and only if for each subset \(S \) of \(Y \) and for each open set \(U \) containing \(f^{-1}(S) \), there exists a gs-open set \(V \) of \(Y \) containing \(S \) and \(f^{-1}(V) \subset U \).

Proof: (Necessity) Let \(S \) be a subset of \(Y \) and \(U \) be an open set of \(X \), such that \(f^{-1}(S) \subset U \).
Then \(Y - f(X - U) \), say \(V \), is a gs-open set containing \(S \) such that \(f^{-1}(V) \subset U \).
(Sufficiency) Let \(F \) be a closed set of \(X \), we claim that \(f(F) \) is gs-closed in \(Y \), that is, \(f^{-1}(Y - f(F)) \subset X - F \).
By taking \(S = Y - f(F) \) and \(U = X - F \) hypothesis there exists a gs-open set \(V \) of \(Y \) containing \(Y - f(F) \) and \(f^{-1}(V) \subset X - F \).
Then we have \(F \subset X - f^{-1}(V) \) and \(Y - V = f(F) \).
Since \(Y - V \) is gs-closed, \(f(F) \) is gs-closed and thus \(f \) is a gs-closed map.

The main results of this paper are given in the next section:

4- S-Normal And S-Regular Spaces
In this section, we study s-normal and s-regular spaces and we give sufficient conditions on \(f : (X, \tau) \rightarrow (Y, \sigma) \) so that \(f \) preserved s-normality and s-regularity.

First, recall the following definitions:

Definition (4.1), [5]: Let \((X, \tau) \) be a topological space, then \(X \) is s-normal if and only if given a closed set \(F \subseteq X \) and \(x \notin F \), then there exists two disjoint open sets \(W_1 \) and \(W_2 \) such that \(x \in W_1 \), \(F \subseteq W_2 \) and \(W_1 \cap W_2 = \emptyset \).

Definition (4.2), [5]: Let \((X, \tau) \) be a topological space, we say that \((X, \tau) \) is s-normal if and only if given two disjoint closed sets, \(F_1 \) and \(F_2 \) in \(X \), then there
exists two disjoint semi-open sets, W_1 and W_2 such that $F_1 \subseteq W_1$, $F_2 \subseteq W_2$.

Theorem (4.3):

If $f : (X, \tau) \longrightarrow (Y, \sigma)$ is a continuous and onto gs-closed map from a normal space (X, τ) to a space (Y, σ), then (Y, σ) is s-normal.

Proof:

Let A and B be disjoint closed sets of Y. Since X is normal, then there exist disjoint open sets U and V in X such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$ (by theorem (3.5)).

Then there exist gs-open sets G and H in Y such that $f^{-1}(G) \subseteq U$, $f^{-1}(H) \subseteq V$ and $f^{-1}(G) \cap f^{-1}(H) = \emptyset$.

Hence $G \cap H = \emptyset$, since G is gs-open and A is closed.

$G \supseteq A$ implies that $s \text{ int}(G) \supseteq A$.

Similarly, $s \text{ int}(H) \supseteq B$.

Hence $s \text{ int}(G) \cap s \text{ int}(H) = G \cap H = \emptyset$.

Therefore, Y is s-normal.

The next corollary is given in [7], which may be considered as a result of the above theorem:

Corollary (4.5):

(i) Let $f : (X, \tau) \longrightarrow (Y, \sigma)$ be a continuous semi-closed onto mapping, if (X, τ) is normal then (Y, σ) is s-normal.

(ii) Let $f : (X, \tau) \longrightarrow (Y, \sigma)$ be a continuous, sg-closed onto mapping, if (X, τ) is normal then (Y, σ) is s-normal.

Proof:

(i) Since f is semi-closed and then f is gs-closed.

Then by theorem (4.3), we get that Y is s-normal.

(ii) Since f is sg-closed, then f is gs-closed.

Then by theorem (4.3), we get that Y is s-normal.

Theorem (4.6):

If $f : (X, \tau) \longrightarrow (Y, \sigma)$ is a continuous semi-open and gs-closed onto mapping from a regular space (X, τ) to a space (Y, σ), then (Y, σ) is s-regular.

Proof:

Let $y \in Y$, let U be an open set containing y in Y.

f is onto, then there exists $x \in X$ such that $f(x) = y$.

Now, $f^{-1}(U)$ is an open set in X containing x.

But X is regular, then there exist an open set V such that:

$x \in V \subseteq \text{cl}(U) \subseteq f^{-1}(U)$

$y \in f(V) \subseteq f(\text{cl}(V)) \subseteq U$.

But $f(\text{cl}(V))$ is gs-closed.

Then we have $\text{scl}(f(\text{cl}(V))) \subseteq U$.

Therefore, $Y \in f(V) \subseteq \text{scl}(f(V)) \subseteq U$ and $f(V)$ is semi-open in Y (Because f is semi-open).

Hence Y is s-regular.

Corollary (4.7):

If $f : (X, \tau) \longrightarrow (Y, \sigma)$ be a continuous, semi-open and sg-closed onto mapping, if (X, τ) is a regular space then (Y, σ) is s-regular.

Proof:

Since f is sg-closed, then f is gs-closed (by theorem (4.6)).

Hence we get that Y is s-regular.

5- References

الخلاصة

في هذا البحث، قمنا بدراسة التطبيقات شبه العامة المغلقة (sg-closed maps) والتطبيقات العامة شبه المغلقة (gs-closed maps) وvatتغطي بعض النتائج حولهما مع البرهان حيث تضمنت دراسة بعض من خواصهما الرئيسة الملاحظة لهذا النوع من التطبيقات. كما وتمت دراسة الفضاءات شبه الطبيعية (s-normal) والفضاءات شبه المنتظمة (s-regular) بالاعتماد على علاقتها مع التطبيقات شبه العامة المغلقة والتطبيقات العامة شبه المغلقة.